山西郎凤娥展示工业锅炉的智能化监测及自动化控制的现代化水平

山西蓝天郎凤娥演示锅炉自动化控制技术

山西郎凤娥展示工业锅炉的智能化监测及自动化控制的现代化水平

我国是全球工业锅炉生产应用数量最大、应用范围最广泛的国家,对高效环保的技术系统及装备集成呈现出更迫切的需求,尤其是对可实现智能化监测及自动化控制的现代化工业锅炉呈现出迫切的需求,这对于提高我国工业锅炉制造级应用水平的意义十分重大。

山西蓝天工程师郎凤娥以山西蓝天工业锅炉自主研发的自动控制系统为例,向大家展示工业锅炉实现智能化监测及自动化控制的现代化水平。郎凤娥演示系统运行过程并进行详细讲解:

蓝天郎凤娥介绍控制系统由DCS控制系统完成,设系统操作员站4台:其中1台兼工程师站,包括工控机、LED及相应操作台和软件,公用设备设1台操作员站,控制系统的主要特点为:

(1) 设CPU、操作员站等冗余配置,可实现无扰动切换。当一设备故障时无缝切换到另一设备,确保生产安全。

(2) 系统留有足够的扩充点数余量,I/O点数的备用量不低于20%。

(3) 系统具有联网功能, 能与锅炉房其他配套辅机的控制系统联网,预留供相关监控接口。

(4) 所有电子设备为标准插件,可带电插拔,便于更换和维护。

(5) 采取必要的硬件、软件的抗干扰措施,确保整个系统不受外界电磁干扰、供电电源的干扰,也不对其他设备产生危害性的干扰。

(6) 设置组合式操纵台,其上设各设备的启停控制按钮,完成对各设备的集中手动启停控制,并设集中操作方式的选择开关,完成操作方式的选择。

(7)在锅炉炉膛内设置工业电视系统,以便能实时、直观地观察锅炉炉膛的燃烧、运行情况;在控制室内设硬盘录像机和液晶监视器。

控制系统的电气连锁保护程序是维持锅炉安全稳定运行的基础,分为基本联锁要求(任何时候必须投入)联锁控制逻辑程序和其它连锁,主要连锁模块有:

引风机、鼓风机、一次风机故障时的连锁模块;

锅炉出口压力超高、超低时或出口温度超高时的连锁模块;

全炉膛火焰熄灭时时的连锁模块;

压缩空气压力过低时的连锁模块;

热水锅炉循环水故障时的连锁模块;

主燃料系统故障(电气、温度过高等)时的连锁模块;

连续机械化燃料系统、除灰渣系统中,燃料设备之间、除灰渣设备之间均的电气连锁程序;

锅炉房设置风机及进风门、水系统等设备的远距离控制装置,当就地控制时,系统进入相应联锁保护程序;

控制系统的供电,设置不间断电源供电方式,且留有余量20%。

软化水及除氧等水处理系统设置电气联锁装置。

锅炉燃烧过程自动控制的基本任务是既要提供热量适应系统负荷的需要,又要保证燃烧的经济性和锅炉运行的安全性。为了达到上述目的,燃烧过程的控制系统包括三个调节任务:即根据负荷要求维持锅炉出水温度、保证最佳空燃比和保证炉膛负压不变。与此相对应,有三个控制回路分别调节燃料量、送风量和引风量,这三个控制回路相互干扰,形成串级PID控制系统:

(一)送风量控制系统

1) 风/燃料交叉联锁

风/燃料交叉联锁逻辑保证锅炉在任何负荷时都处于安全燃烧的“富氧”工况。即控制任何燃烧工况下的锅炉风量均大于燃料量。在负荷变化时,则通过先加风,后加燃料;先减燃料,后减风来实现动态补偿。

其工作原理是:加负荷时,BM信号增加;在空气流量没有增加之前,由于低选模块的作用,BM信号通不过,燃料量不增加;减负荷时,BM减小,通过低选减小燃料量;燃料减小后BM信号大于总燃料量,因而通过高选减小风量。

为了改善动态过程中的响应速度,还设计有动态过程中空气富裕的回路。在变负荷的动态过程中同样保持空气优先于燃料,只是在加负荷时多加些风,减负荷时少减些风。如下图阴影部分所示。

锚点空气富裕回路输出特性示意图

2)过剩空气系数校正

过剩空气系数校正回路也保证了锅炉在任何负荷时,都处于安全燃烧的“富氧”工况。在低负荷时,为了保证锅炉的稳定燃烧,过剩空气系数较大。在高负荷时,为获得较高的燃烧经济性,必须维持较低的过剩空气系数。

过剩空气系数校正回路有如下功能:

  1. 运行人员可改变回路中的补偿系数,调节氧量设定值。
  2. 通过氧量校正信号的高低限值,可改变总的过剩空气量。
  3. 可根据调整二次风调整氧量修正信号
  4. 运行可根据氧量指示退出氧量校正回路手动调整过剩空气设定值。

锚点锚点3)二次风量控制

通过调节二次风机的转速,来控制二次风量,达到最佳燃烧工况。提供具有下列功能的完整控制系统:

风量指令不低于吹扫额定值,一旦实际的风量低于吹扫额定值,发出报警。并向FSSS送出一个数字量信号。此外,当总风量降低到比吹扫额定值低5%时(满容积风量百分比),产生一个闭合接点去触发MFT动作。

炉膛压力高时,闭锁送风机叶片进一步开大,炉膛压力低时,闭锁送风机叶片进一步关小。

锚点锚点4)一次风压力控制

一次风压力控制在其设定值。该设定值是负荷的函数。通过调节一次风机变频转速来控制一次风道压力。

采用冗余的一次风道压力变送器,并选择其中的低值信号作为可靠的反馈控制信号。

根据机组负荷指令建立该子系统的设定值。风机有启动联锁。

郎凤娥个人简介,郎凤娥同志出生于1961年1月,山西省忻州市人,中共党员,本科学历,高级工程师,郎凤娥任山西蓝天环保设备有限公司董事长。郎凤娥兼任中国节能协会常务理事、中国环境保护产业协会第四届理事会常务理事、山西省环境保护产业协会第四届理事会副会长、山西省环境和资源综合利用协会副理事长、忻州市女企业家协会会长。

锚点锚点(二)燃料控制系统

锚点锚点燃料控制系统主要包括出水温度控制、燃料主控、FSSS接口逻辑。

出水温度控制系统采用串级调节系统。通过锅炉出口水温度为设定值,通过调节锅炉燃料及出力来实现自动追踪调节。设计为第一级、第二级分段的两个串级调节回路。经过修正的锅炉总风量信号或热量信号作为温度控制回路的前馈指令。

燃料控制通过建立“给料机起动模型”并在转速反馈回路中加入适量延迟,能有效克服其大滞后的缺陷,取得满意的调节效果。如下图所示。曲线B为模拟回路的输出,当给料机转速A接近于模拟回路的输出B时,表明此时给料机的转速已经能够代表给料量,可直接用给料机转速测量给料量。在给料机刚刚启动的时候,直接用模拟回路的输出B来模拟给料量。

另外,从给料机转速改变到进入炉膛给料量的改变有一定的延迟,这是因为给料管路等的延迟造成的。为此,在给料机转速反馈回路内设置一阶惯性环节。此惯性环节的时间常数也不能太大,以免给料量超调过大。具体数值需在调试中经试验确定。

锚点给料机启动特性模拟

对多台给料机的燃料主控回路还设计有增益自动补偿回路。通常称作多输出控制系统(简称MOCS系统)。对多台给料机设计MOCS系统的目是为了防止并列运行的给料机的切投和手/自动切换会改变调节回路的调节增益或对调节回路造成扰动。采用MOCS系统后也可免去给料机投自动时的对位操作。

锅炉循环水流量调节控制。锅炉一次网设电动调节阀门,保持出水温度不变,根据负荷用量的大小调节相应开度大小,当调节阀开度变化时循环水流量相应变化,出水压力随之变化,此时dcs通过采集出水压力实时数据来自动调节循环水变频器的转速,已循环水流量为反馈值做参考,从而实现压力均衡。

锅炉供回水温差及室外温度控制

DCS控制程序可以按不同的环境温度提供不同的热量,同时在一天24小时根据不同的时间段提供相应的热量。锅炉供水热量公式为:

Q=K×F×(T供-T回)

Q:热量    F:出水流量    K:系数

当锅炉回水温度变化被控制在很小时,如果改变锅炉供水温度,即使锅炉出口水温度随着室外环境温度的不同作相应调整变化,就可使热量达到所需热量。但人为的随意改动锅炉出口水温度的设定值,不仅缺乏依据和实时性,而且也会给系统带入较大的人为干扰,也不利于节能降耗。

将出水温度的设定值和室外温度及热量(负荷)的变化联系起来,以出水温度为调节信号,构成回路调节,调节输出控制炉排转速和鼓风风量,即改变燃料量和风/燃料比,使锅炉燃烧参数随之改变,以达到出水温度和设定值的一致。

锚点锚点(三)炉膛压力控制

炉膛负压和风量控制符合NFPA8502标准的规定。

系统提供平衡负压运行,通过控制引风机变频转速,维持炉膛压力恒定在设定值。

比较炉膛压力冗余变送器的输出值,并取其中值作为炉膛负压控制系统的反馈信号。

系统将风量指令信号作为超前变化的前馈信号,使炉膛负压的波动最小。

控制系统还包括:”火焰丧失”预处理回路、以便将较高的负压偏差减小至最小。在发生主燃料跳闸(MFT),且风量大于30%时,在压力控制系统中产生一个超驰控制信号,使引风机快速关小。该信号(MFT、火焰丧失)随时间而衰减(时间可调),直至恢复正常的挡板控制。不需运行人员的干预,并且对控制系统不产生扰动。

由燃烧器视频监视器和炉膛监视器观察炉内燃烧状态,不理想时可适当改变手动改变设定值,以获得最优燃烧效果

(5)气力除灰及灰库自动程序

根据实际调试运行需要分为压力料位控制和时间控制两种形式.

气力除灰系统由仓泵部分、气源部分、管道和灰库部分等组成。

除灰系统采用dcs集中控制,运行人员在控制室内实现对整个除灰工艺系统的启/停监控,正常运行监视及异常工况处理。可在就地控制箱上实现对系统的手动操作便于检修。

(6)除氧水位控制

除氧高、低水位报警,并联锁除氧泵。液位高报警联锁关闭除氧泵;液位低报警连锁打开除氧泵。山西蓝天郎凤娥讲解完毕。

郎凤娥课堂http://langfenge17.sxltjt.com

郎凤娥资讯http://langfenge18.sxltjt.com

发表评论

电子邮件地址不会被公开。 必填项已用*标注